Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population.

نویسندگان

  • Y H Liu
  • Q Yi
  • X B Hou
  • X G Zhang
  • J J Zhang
  • H M Liu
  • Y F Hu
  • Y B Huang
چکیده

Flowering-related traits in maize are affected by complex factors and are important for the improvement of cropping systems in the maize zone. Quantitative trait loci (QTLs) detected using different materials and methods usually vary. In the present study, 266 maize (Zea mays) F2:3 families and 301 recombinant inbred lines (RIL) derived from a cross between 08-641 (founding parent from southeast China) and Ye478 (founding parent from China) were evaluated for four flowering-related traits, including days to tasseling (DTT), days to pollen shedding (DPS), days to silking (DTS), and anthesis-silking interval. Sixty-six QTLs controlling the target traits were detected in the F2:3 and RIL populations via single environment analysis and joint analysis across all environments (JAAE). The QTLs explained 0.8-13.47% of the phenotypic variation, with 12 QTLs explaining more than 10%. The results of meta-QTL (MQTL) analysis indicated that 41 QTLs could be integrated into 14 MQTLs. One MQTL included 2.9 QTLs, ranging from two to ten QTLs for one to three traits. QTLs, including MQTL1-1 and MQTL9-1, were detected across the F2:3 and RIL populations via SAE and JAAE. Among the MQTLs, nine QTLs were integrated into MQTL9-1 and affected DTT, DPS, and DTS, with the favored allele being derived from 08-641. MQTL3-2 showed high phenotypic variation and was suitable for fine mapping to determine the genetic mechanisms of flowering. MQTL3-2 could be applied to improve inbred lines using marker-assisted selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize

The leaf number above the primary ear (LA) is a major contributing factor to plant architecture in maize. The yield of leafy maize, which has extra LA compared to normal maize, is higher than normal maize in some regions. One major concern is that increasing LA may be accompanied by increased plant height and/or flowering time. Using an F2:3 population comprising 192 families derived from a lea...

متن کامل

Genetic loci mapping for ear axis weight using recombinant inbred line (RIL) population under different nitrogen regimes in maize

Ear axis weight (EAW) is one of the important agronomic traits in maize (Zea mays L.), related to yield. To understand its genetic basis, a recombinant inbred line (RIL) population, derived from the cross Mo17 × Huangzao4, was used for quantitative trait locus mapping (QTL) for EAW under high and low nitrogen (N) regimes. The results showed that a total of three QTLs were mapped on chromosomes ...

متن کامل

Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10.

Flowering time is a major adaptive trait in plants and an important selection criterion for crop species. In maize, however, little is known about its molecular basis. In this study, we report the fine mapping and characterization of a major quantitative trait locus located on maize chromosome 10, which regulates flowering time through photoperiod sensitivity. This study was performed in near-i...

متن کامل

Combined bulked segregant sequencing and traditional linkage analysis for identification of candidate gene for purple leaf sheath in maize

Anthocyanin accumulation in various maize tissues plays important roles in plant growth and development. In addition, some color-related traits can be used as morphological markers in conventional maize breeding processes and purity identification of hybrid seeds. Here, we noticed that the leaf sheath color was controlled by a dominant gene, because purple (PSH) and green leaf sheaths (GSH) wer...

متن کامل

Diversity of Maize Shoot Apical Meristem Architecture and Its Relationship to Plant Morphology

The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2016